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Resource Adequacy Resilience

“The ability of the electricity 

system to supply the aggregate 

electrical demand and energy 

requirements of the end-use 

customers at all times, taking into 

account scheduled and reasonably 

expected unscheduled outages of 

system elements” (NERC, 2013)

“The ability to withstand and 

reduce the magnitude and/or 

duration of disruptive events, 

which includes the capability to 

anticipate, absorb, adapt to, and/or 

rapidly recover from such an event” 

(FERC 2018)

North American Electric Reliability Corporation. Reliability 
Terminology, August 2013

Federal Energy Regulatory Commission. Grid Resilience in 

Regional Transmission Organizations and Independent System 
Operators, January 2018
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Resource Adequacy Resilience

Challenges to an Adequate System:

• Load growth and electrification

• Increasing weather-dependent generation

• Common-cause impacts

Challenges to a Resilient System:

• Load growth and electrification

• Increasing weather-dependent generation

• Common-cause impacts
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Resource Adequacy Resilience

Challenges to an Adequate System:

• Load growth and electrification

• Increasing weather-dependent generation

• Common-cause impacts

• Increasing frequency and severity of high-

stress events

Challenges to a Resilient System:

• Load growth and electrification

• Increasing weather-dependent generation

• Common-cause impacts

• Increasing frequency and severity of high-

stress events

• Increasing dependence on electricity

We care what happens as a 
result of an outage

We care that an outage happens
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Resource Adequacy Resilience

Assessing Adequacy:

• Well-defined metrics

• Concerned with loss of load

• Frequency

• Duration

• Magnitude

• In general, all outages are equally 

important

Assessing Resilience:

• No standard metrics

• Concerned with loss of load

• Concerned with pre-event preparedness

• Concerned with during-event response

• Concerned with post-event restoration

• Some aspects of outages may be more 

important than others

• Widespread, long-duration disruptions

• Disruptions to critical loads

• Disruptions to vulnerable customers
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Resource Adequacy Resilience

Assessing Adequacy:

• Well-defined metrics

• Concerned with loss of load

• Frequency

• Duration

• Magnitude

• In general, all outages are equally 

important

Assessing Resilience:

• No standard metrics

• Concerned with loss of load

• Concerned with pre-event preparedness

• Concerned with during-event response

• Concerned with post-event restoration

• Some aspects of outages may be more 

important than others

• Widespread, long-duration disruptions

• Disruptions to critical loads

• Disruptions to vulnerable customers

Hard to define metrics 
that capture all aspects 

of resilience in a 
meaningful way
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Is the grid adequate? Is it resilient? How do we judge? 
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New Uncertainties to Consider

Long-term planning for adequacy and resilience requires 

augmenting traditional planning regimes

“Traditional” Planning Uncertainties

Load growth Electrification

Variable generation

Fuel prices

Climate Change

Policies and regulations

Severe weather events

Climate impacts on assets
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New Uncertainties to Consider

Uncertainties drive the scoping and set-up of assessment 

efforts, for both adequacy and resilience

“Traditional” Planning Uncertainties

Load growth Electrification

Variable generation

Fuel prices

Climate Change

Policies and regulations

Severe weather events

Climate impacts on assets

Supply Demand
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EPRI Climate Resilience and 

Adaptation Initiative (READi)

▪ COMPREHENSIVE: Develop a Common Framework addressing the 
entirety of the power system, planning through operations

▪ CONSISTENT: Provide an informed approach to climate risk 
assessment and strategic resilience planning that can be replicated

▪ COLLABORATIVE: Drive stakeholder alignment on adaptation 
strategies for efficient and effective investment

Physical Climate 

Data & Guidance

• Identify climate hazards 
and data required for 
different applications

• Evaluate data 
availability, suitability, 
and methods for 
downscaling & localizing 
climate information

• Address data gaps

Energy System & 

Asset Vulnerability 

Assessment

• Evaluate vulnerability at 
the component, system, 
and market levels from 
planning to operations

• Identify mitigation options 
from system to customer 
level

• Enhance criteria for 
planning and operations to 
account for event 
probability and uncertainty

System Adaptation & 

Investment 

Prioritization

• Assess power system and 
societal impacts: 
resilience metrics and 
value measures

• Create guidance for 
optimal investment 
priorities

• Develop cost-benefit 
analysis, risk mitigation, 
and adaptation strategies

W o r k s t r e a m  1 W o r k s t r e a m  2 W o r k s t r e a m  3

PHYSICAL CLIMATE 

HAZARD

VULNERABILITY 

ASSESSMENT

RESPONSE

PRIORITIZATION

Deliverables:  Common Framework “Guidebooks”

• Climate data assessment and 

application guidance    

• Vulnerability assessment

• Risk mitigation investment

• Recovery planning

• Hardening technologies

• Adaptation strategies

• Research priorities
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Climate READi uses an integrated system modeling approach

Still, there are many decisions required in the selection of climate data and 
extreme events to plan for
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Climate READi uses an integrated system modeling approach

Still, there are many decisions required in the selection of climate data and 
extreme events to plan for

What might the future grid 
look like?

Will the proposed 
future grid be 

adequate, reliable, 
and resilient?

How can we represent climate impacts within system models? 
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Bounding the data problem: How do we expect climate 

and weather to change?

▪ Data choice and preparation 
should be determined by the 
application or modeling need, 
including planning time horizon

▪ Adequacy and resilience 
concerns both lie in the tails of a 
distribution – important to 
understand what these changes 
mean

▪ Relevant data can span both 
historical and future periods
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Generation: Change in Decadal Minimum Annual Inflow to Normal Storage Ratio (DMAINSR)

SSP2-4.5 (2020-2059)

Hydrological (HUC2) region colors = Median generation risk of sites
Pie chart = # of sites by generation risk category

50 MW

25,000 MW

500 MW

10,000 MW

DMAINSR

Total Capacity

Risk

Benefit

Hydrological region colors: Median generation risk 
Pie chart: Distribution of risk across the number of 
hydropower plants

Hydro Generation Risk Indicator: 

Change in Decadal Minimum Annual 

Inflow to Normal Storage Ratio 

(DMAINSR)

SSP2-4.5 (Midterm: 2020-2059)

Graphic Note:
• This graphic represents the projected change in decadal minimum annual flow as a ratio of normal reservoir 

storage levels. This indicates the projected extent of impacts on generation and the extent that maintaining generation levels will have on 
reservoir volumes. It is important to note that additional factors such as outflow requirements and timing of the annual inflow play a key 
role in determining generation impacts at individual sites. This should be further explored in future work. 

Bounding the data problem: What might 

future extreme events look like?
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Beyond the climate data: How will future conditions 

impact electricity demand? 

▪ Load models have typically 
accounted for historical or 
weather-normal conditions

▪ Need to capture sensitivity of 
projected end-use technologies 
to extreme events or extreme 
meteorological years

▪ End-use projection models can 
be useful for understanding 
sensitives in demand  - largest 
change not driven by climate!
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Beyond the climate data: How will future conditions 

impact asset performance? 

▪ High-stress events: aggregation of 
individual asset impacts

▪ Vulnerabilities vary with asset class, 
configuration, design standards, 
adaptations in place, age, 
maintenance history, etc.

▪ Accurately capturing vulnerabilities 
is broader than failures – it gives a 
realistic assessment of performance 
across a range of operating 
conditions

NGCC Capacity Derates
         Physics-based relationship

           Accounting for increased forced outage
           rates from historical performance data
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Once we choose the bounds of climate risk, we still need 

to choose data as input for models

Future Climate 
Conditions

Natural variability

Climate change

Uncertainty

Typical 
Meteorological 

Year
Hourly SnapshotExtreme Event 

Scenario

What we want to 

represent

We need to ensure the ‘right’ data is passed from climate 

projections to planning models and then to evaluation 
processes – without leaving potentially critical periods out!

What power system planning models 
are often designed to take as input:
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One approach: Risk Screening (RiSc) to identify relevant 

data across models

1. Take a large amount of climate data and pass it through fast, approximate models 
that correlate to stressed grid conditions: high loads and high likelihood of generator 
unavailability

2. Identify key time periods for more detailed downstream modeling to capture a 
diverse set of extreme events

Challenges in applying climate data in power system planning 

assessments:

• Climate models provide coarse spatial and temporal 

resolutions

• Power system operations are sensitive to weather co-

variability (e.g., wind and solar)

• Extremes are rare by definition (and we may lack sufficient 

observations)

Climate

72  Historical years

x 5 global climate models

x 2 emissions scenarios

x 26 asset locations

x 8760 hours per year

Simplified representation of synchronous meteorology 
(temperature, wind, solar, etc.)
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RiSc identifies high-stress time periods of concern 

Event A

Event B

Event C
Event D

RiSc tool clusters and flags diverse events
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Climate Data Across Modeling Functions: RiSc can 

support data selection for many uses

Climate data and impacts are consistently captured across bulk system modeling functions

E.g., capacity expansion may use specific events

E.g., transmission reliability requires snapshots

E.g., resource adequacy evaluates many weather years

E.g., production cost evaluate specific years or events
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Climate READi uses an integrated system modeling approach

Still, there are many decisions required in the selection of climate data and 
extreme events to plan for

What might the future grid 
look like?

Will the proposed 
future grid be 

adequate, reliable, 
and resilient?

How can we represent climate impacts within system models? 
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Resilient Capacity Expansion Planning: Directly 

accounting for high-stress events through planning

▪ Baseline Planning Model: Find the least-cost 
generation and transmission expansion plan 

▪ Resilient Planning Model: Find the least-cost 
generation, transmission, and hardening expansion 
plan that meets specified resilience targets during 
high-stress events

▪ Resilience Metric for this example: Lost Load 
Tolerance (LLT)
– LLT 10% means: No event in the capacity planning model can 

drop more than 10% of system demand

– This is a Planning Target for the capacity planning model, not 
an evaluation result

Each candidate plan is 

the least-cost plan for the 

specified Resilience 

Target

Baseline PlanResilient Plans

Tighter resilience targets increase total costs 
for synthetic Texas case study system



© 2024 Electric Power Research Institute, Inc. All rights reserved.25

The target system buildout changes as it aims to meet a 

higher resilience target

▪ More transmission capacity is built when resilience targets 
are tightened

▪ Solar is often available during extreme heat events so more 
solar generation is built at all LLT targets

▪ The added transmission and solar investments help reduce 
operating costs in non-extreme conditions

▪ Most resilience costs are driven by hardening investments

▪ Some capacity receives winter protection

▪ Most combustion turbines are outfitted with heat 
protection in the form of advanced inlet air chillers
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Climate READi uses an integrated system modeling approach

Still, there are many decisions required in the selection of climate data and 
extreme events to plan for

What might the future grid 
look like?

Will the proposed 
future grid be 

adequate, reliable, 
and resilient?

How can we represent climate impacts within system models? 
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Example application: Climate-informed resource 

adequacy assessment

• 71 climate projected weather years were selected based on the outcome of the Climate RiSc 
tool

• Time-sequential optimization-based Monte Carlo simulations including technical detail, such as 
ramps and minimum operating points

• Network aggregated to eight weather zones across synthetic Texas system
• Climate data is incorporated through weather-dependent load profiles, variable Renewable 

Energy Sources production, outage probabilities and high-temperature derates of generators
– Flooding risks, fires, and hurricanes are not included

– Temperature-dependent fuel supply risks only indirectly accounted for via generator outage 
probabilities

71 years 
Weather

20 Outage
Draws Each

1420
Samples

8760 Hours
per Year

+12 Million
Observations
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Can standard resource adequacy metrics also provide 

insights for resilience?

Scenario
Loss-Of-Load-Expectation 

[days/year]
Expected-Unserved-Energy 

[MW/year]
Loss-Of-Load-Hours

[hours/year]

LLT - 0% 0.08 7.77 0.09

LLT - 10% 0.46 1,837.62 1.16

Baseline 3.06 18,994.21 8.67

38 times 
more days w. 
load shedding 
expected

19GW (Baseline) 
vs. 7.8MW (LLT 
0%) expected 
unserved energy

Only LLT – 0% falls 
within standard 

reliability criterion 
LOLE ≤ 0.1

LLT – 0% LLT – 10% Baseline
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However, model outputs are subject to assumptions 

regarding the model inputs…

▪ Looking at load projections with: 
– Higher electrification rates
– More conservative assumptions around efficiency of end-use 

technologies

▪ Resulting in: 
– Much higher-demand projections
– Requires additional capacity buildout 

There is significant uncertainty in future load projections – how 
might different assumptions affect results?
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Sensitivity load projections: Updated adequacy results

▪ Update generation portfolio and load profiles are exposed to updated risks
▪ Afternoon hours in summer months seem to be challenging for the system 

→ Characteristic afternoon event passed back from RA to Capacity Expansion
→ New system planned to better handle this type of event

LOLE
[days/year]

EUE
[MWh]

LOLH
[hours/year]

NEUE
[ppm]

LLT - 0% - v1 23.82 115,801 33.6 254.1
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Sensitivity load projections: Updated adequacy results

▪ Iteration with capacity expansion based on RA outputs improves results
– LOLE reduced by factor of 4; EUE by factor of 5.5

▪ However, iteration does not entirely remove reliability issues! 
– Integrated process works, but this may be more art than science to get it right – how much fine-tuning is practical in practice? 

– Continue iterating OR pass more severe events OR change the structure of the capacity expansion problem OR… 

LOLE
[days/year]

EUE
[MWh]

LOLH
[hours/year]

NEUE
[ppm]

LLT - 0% - v1 23.82 115,801 33.6 254.1

LLT - 0% - v2 6.19 20,829 8.3 45.5
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Are we building an adequate and resilient system? 

▪ Iteration with capacity expansion based on RA outputs improves results
– LOLE reduced by factor of 4; EUE by factor of 5.5

▪ However, iteration does not entirely remove reliability issues! 
– Integrated process works, but this may be more art than science to get it right – how much fine-tuning is practical in practice? 

– Continue iterating OR pass more severe events OR change the structure of the capacity expansion problem OR… 

LOLE
[days/year]

EUE
[MWh]

LOLH
[hours/year]

NEUE
[ppm]

LLT - 0% - v1 23.82 115,801 33.6 254.1

LLT - 0% - v2 6.19 20,829 8.3 45.5
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Takeaways for climate resilience (and adequacy!)

▪ Ensuring resilience in a changing climate requires changes to 
traditional practices, but we (largely) know what this takes

– Incorporation of forward-looking climate risk with sufficient weather variability

– Models that account for climate-induced impacts for assets across the system

– Knowledge of adaptation strategies to include in planning

– Consistent assumptions and scope across models and data

▪ Planning for resilience can improve adequacy, but assessing resilience 
likely requires more than what adequacy alone can tell you

– Doing this well is a combination of art and science!



© 2024 Electric Power Research Institute, Inc. All rights reserved.35

Takeaways for climate resilience (and adequacy!)

– Incorporation of forward-looking climate 
risk with sufficient weather variability

– Models that account for climate-
induced impacts for assets across the 
system

– Knowledge of adaptation strategies to 
include in planning

– Consistent assumptions and scope 
across models and data

1 2
Ensuring resilience in a 
changing climate requires 
changes to traditional 
practices, but we (largely) 
know what this takes

Planning for resilience can 
improve adequacy, but 
assessing resilience likely 
requires more than what 
adequacy alone can tell you

– Additional aspects of system state and 
behavior may be needed to characterize 
resilience

– Integration across models can provide 
confidence in robust solutions

– Doing this well is a combination of art and 
science!
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